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Stiffness and strength behaviour of 
woven fabric composites 

T. ISH I KAWA*,  T.-W. CHOU 
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Delaware 19711, USA 

This paper presents three analytical models for the investigation of the stiffness and 
strength of woven fabric composites. The "mosaic model" is effective in predicting the 
elastic properties of fabric composites. The "fibre undulation model" takes into account 
fibre continuity and undulation and has been adopted for modelling the "knee behaviour" 
of plain weave fabric composites. The "bridging model" is developed to simu late the load 
transfer among the interlaced regions in satin composites. The theoretical predictions 
coincide extremely well with experimental measurements. The elastic stiffness and knee 
stress in satin composites are higher than those in plain weave composites due to the 
presence of the bridging regions in the weaving pattern. 

1. Introduction 
Woven fabric composites have gained increasing 
technological importance. They provide more 
balanced properties in the fabric plane than uni- 
directional laminae; the bidirectional reinforce- 
ment in a single layer of  fabric gives rise to 
excellent impact resistance. The ease of  handling 
and low fabrication cost have made fabrics attrac- 
tive for structural applications [1-3] .  

In spite of  their popularity, the mechanical 
behaviour of  fabric composites is not well under- 
stood. The purposes of  this paper are two-fold. 
First, the linear elastic properties of  woven fabric 
composites are predicted. Second, the non-linear 
behaviour due to the initial failure of  the fabric, 
which is known as the "knee phenomenon" [4] ,  
is modelled and analysed. 

All woven fabrics consist of  two sets of  inter- 
laced threads, known as the warp and fill threads 
[5]. The types of  fabrics can be identified by the 
pattern o f  repeat o f  the interlaced regions as 
shown in Fig. 1. Two basic geometrical parameters 
can be defined to characterize a fabric; nfg denotes 
that a warp thread is interlaced with every n~g-th 
fill thread and nwg denotes that a fill thread is 
interlaced with every nwg-th warp thread. Here, 
we confine ourselves to non-hybrid fabrics and the 

case of  nwg = neg = ng. Fabrics with ng ~> 4 and 
where the interlaced regions are not connected are 
known as satin weaves. As defined by their ng 
values, the fabrics in Fig. 1 are termed plain weave 
(ng = 2), twill weave (ng = 3), 4 harness satin 
(ng = 4), and 8 harness satin (ng = 8). 
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Figure I Examples of woven fabric patterns: (a) plain 
weave (ng= 2); (b) twill weave (ng = 3); (c) 4 harness 
satin (rig = 4); and (d) 8 harness satin (ng = 8). 
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Figure 2 Idealization for  the  mosaic  model .  (a) cross- 
sectional view o f  a woven  fabric, (b) woven  fabric impreg- 
na ted  wi th  resin, (b) idealization o f  the  fabric composi te ,  

The authors have proposed and developed three 
models for approximating the elastic and knee 
behaviour of woven fabric composites. In the first 
model, also referred to as the "mosaic model", 
a woven fabric (Fig. 2a) after impregnation with 
resin (Fig. 2b) is idealized as an assemblage of 
asymmetrical cross.ply laminates. Fig. 3 depicts 
the two-dimensional view of the mosaic model for 
a woven fabric composite. By combining this 
model and the iso-stress and iso-strain assump- 
tions, the upper and lower bounds of elastic 
moduli have been derived by Ishikawa [6], and 
Ishikawa and Chou [7] for non-hybrid and hybrid 
fabric composites, respectively. The scheme based 
upon the mosaic model is different from that of 
some existing theories [8-10] in that we have 
adopted the classical laminated plate theory as 
the basis of the analysis and have provided simple 
closed form expressions of the bounds. The pre- 
dictions for hybrid fabric composites in [7] 
compare very favourably with experimental 
results of [2]. 

The objective of the second model is to assess 
the validity and applicability of the mosaic model, 
where the fibre undulation and continuity have 
been omitted. The fibre "undulation model" 
shown in Fig. 4, therefore, has been introduced 
by Ishikawa and Chou [11], for analysing the 
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Figure 3 M o s a i c  mode l  o f  a repeat ing unit  for an 8 harness  
satin. 
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Figure 4 Fibre undula t ion  model .  

elastic and knee behaviour of a threadwise strip 
of a fabric composite. A brief description of the 
model of [11] and its refinement is given in 
Section 2. The essential assumption in this 
approach is that the classical laminated plate 
theory is applicable to each infinitesimal piece 
of the threadwise strip. The knee behaviour is 
then investigated based upon the undulation 
model with the further assumption of the suc- 
cessive failure of threads transverse to the applied 
load. 

The success of the threadwise idealization has 
led to the idea of the third model, known as a 
"bridging model", for the analysis of mechanical 
properties of satin composites. A schematic view 
of the bridging model is depicted in Fig. 8c for a 
repeating unit of the satin fabric composite. The 
regions with straight threads (denoted by A, B, D 
and E) have higher local in-plane stiffness than 
that of an interlaced region (denoted by C) sur- 
rounded by them and hence act as load-carrying 
bridges between adjacent interlaced regions. 
Finally, the knee behaviour in general satin com- 
posites is analysed by combining this model with 
the approach of successive thread failure. 

2. Fibre undulation model for threadwise 
analysis 

The fibre undulation model is developed in order 
to consider the continuity and undulation of fibres 
in a fabric composite. Although the formulation 
of the problem developed in the following is 
applicable to ng values in general, the purpose of 
this model here is to explain the behaviour of 



plain weave composites where ng = 2, and to 
provide the basis of the bridging model to be 
developed later. For predicting the behaviour 
of satin composites where ng > 4, we shall employ 
the bridging model, and the reason will be given 
in Section 4. Fig. 4 depicts the geometry of 
the model where the undulation shape is defined 
by the parameters hi(x), h2(x) and au. The 
parameters ao = (a -- au)/2 and a2 = (a + au)/2 
are automatically determined by specifying au, 
which is geometrically arbitrary in the range from 
0 to a. Because a pure matrix region appears in 
the model, an "overall" fibre volume fraction, Vf 
can be different from Vf in the thread region. 

To simulate the actual configuration, the 
following form of undulation is assumed for the 
fill thread 

h ~ ( x )  = 1 + 

[ ht/2 

The sectional shape of the warp 
pressed by 

h ~ ( x )  = 

Qij = VyxEy]Dv 

0 

O v = 1 -VyxVxy. 

Er/Dv (3c) 

0 Gx~, 

(3d) 

In Equation 3b the Qo is evaluated based upon the 
corresponding stiffness properties within the layer 
defined by h m and hm_ 1 . This is shown in Equation 
5. As the inverted form of Equation 3a, we have 

(4) 

where Ni, Mi, e ~ and Ki indicate membrane stress 

s i n { ( x - - 2 ) ~ u } ] h * / 4  

thread is ex- 

ht/2 

-- ht/2 

(0 < x < ao) 

(ao < x < a~) 

(a2 < x < nga/2) 

(1) 

(0 < x _-< ao) 

(ao < x < a/2) 

(a/2 < x <= a2) 

(2) 

(a2 < x <-_ nga/2). 

Equation 2 represents an improvement of the 
form of h2(x) originally proposed in [11]. The 
refinement is made based upon the observation 
of an actual section as depicted in [8]. 

The theoretical basis of the present investi- 
gation is the classical laminated plate theory 
[ 12, 13]. The constitutive equations are given by 

(;;): [::; 
\Ki 

(3a) 

where 

(Aij'Bo'DiJ) = im-, J ; 2  t 

and 

(1, z, z2)Qij dZ 

(3b) 

resultants, moment resultants, strain, and curva- 
ture of the laminate geometrical midplane, respec- 
tively. It is assumed that this theory is applicable 
to each infinitesimal piece of the model along the 
x-axis. Thus, Aij , B 0 and D 0 are expressed as 
functions o fx  (0 < x < a/2) by 

= h l ( x ) - h f ' / 2  (hi(x) 
Aij(x) f oO dz + 05(0) dz 

- h i 2  U ,~ hl(x)_h. t , /2  

h2(x) w (h/2 Q.M. dz 
+:h~(x) Qo dz +:hAx ) u 

= Qff(hl(x) - h2(x) + h -- ht/2 ) 

+ Q~(O)ht/2 + Q'~(h2(x)--hl(x)) (5) 
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Bij(x ) = �89 Q~(O) [hi(x) - ht/4] h, 

+ �88 
,] [ h 2 ( x  ) - -  h i ( x ) ]  h ,  ( 6 )  

Dii(x ) = ~ Qi M { [hi(x) - ht/2] 3 -- h2(x) 3 + h3/4} 

1 F + ~ Qij(O) [h~/8 -- 3h~h,(x)/4 

+ 3hth2(x)/2] 

+ �89 a.W. [h2(x)3 _ hl(x)a] (7) l./ 

where superscripts F, W and M signify the fill 
and warp threads and matrix, respectively. Similar 
expressions can be written for a/2 < x <~ nga/2. 
The local stiffness of the fill, r Qif(O), appearing in 
Equations 5 to 7 is calculated as a function of the 
local off-axis angle, O(x), which is defined as 

O(x) = arctan\  dx ] "  (8) 

The existence of this angle leads to the reduction 
of the effective elastic moduli in the x-direction 
such that [11,121 

EFx(O) l /[ l~lEFx+(1/G~z_ F r 2 2 = 2Pzx/Ex) lo me 

+ m /Ef] 

,,F (O ) = F r Pzxlo + PyZ mo 

G~y(O) r 2 r 2 = Gxyl 0 + Gyzm 0 
_ F e r ( o )  = EFy - E z ,  (9) 

where l o = cos 0 and m o = sin 0. Here,E, G, and v 
denote Young's modulus, shear modulus and 
Poissons' ratio, respectively. The transverse iso- 
tropy in the y - z  plane of the fill thread has been 
taken into consideration. Thus, the local stiffness 
coefficients become 

Ey Vyx(O)/19 v 0 

[Er  rx~ Ery/Du O ,  , ; ,  0)/D. 

0 G~,(O 

(10) 

F 2 F F where, i, j = 1,2, 6 and O v = 1 -- uy x (0) Ey/E x (0). 
By substituting Equation 10 into Equations 5 to 7 
the local plate stiffness constants can be evaluated. 

We define the averaged in-plane compliance of 
the model under a uniformly applied in-plane 
stress resultant by 

2 (ngal2 ab(x) dx,  (1 1) 
ai] riga a 0 

where the superscript U signifies the fibre undula- 

tion model. Since a~(x) is a constant within the 
straight portion of Fig. 4, Equation 11 can be 
rewritten as 

 Ula, 2|" o2 
~ u  = X - -  nga ] 'J + nga J ao 

a~j(x) dx, 

(12) 

where aij in the first term on the right hand side 
of Equation 12 denotes the compliance for the 
straight portion of the threads, namely, a cross-ply 
laminate and it is independent of x. The other 
compliance coefficients 5~ u and d~ u are obtained 
in a similar manner. 

- = -- b ,  + bb(x ) d x  (13) 

d ~ u =  (1--2an-~) d~+-~-2 ~a2nga ~o d ~ ( x ) d x .  
(14) 

In the case of ng= 2, bi~ U vanishes because that 
b~(x) is an odd function with respect to x = a/2, 
the centre of undulation, due to the form of hi(x). 
By inverting the plate stiffness of Equations 5 to 
7, explicit expressions of the integrands in 
Equations 11 to 14 can be obtained. These inte- 
grations, however, must be conducted numerically 
because of their complexity. The final results of 
the averaged elastic stiffness, A~,  B-/y and/)~,  for 
the entire strip can be reached by inversion of 
- * U  -- --*U ali , bi~ U and dli . If this procedure is applied in 
the warp direction, the balanced properties such as 
A~ = X ~  can be realized. Numerical results 
demonstrating the relationship between the in- 
plane stiffness, .4~, and 1/ng are given in Fig. 5 
for a graphite/epoxy system. Basic material 
properties are listed in Table I. Here, UB, LB and 
TA represent the results of the upper and lower 
bound predictions of the mosaic model [6, 7] 
and the threadwise analysis, respectively. Circles 
indicate corresponding finite element results 
obtained from the compliance values in [11]. 
Fig. 5 demonstrates that a significant decrease 
of .41u1 occurs particularly for plain weave (1/ng = 
0.5) in comparison with a cross-ply laminate 
(1/ng = 0). It is also shown that the finite element 
results are in quite good agreement with simpler 
analytical results. 

3. Analysis of the knee behaviour based on 
threadwise idealization 

The threadwise analysis described above is now 
extended to the study of the stress-strain behav- 
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Figure 5 .~U against ling for the graphite/epoxy com- 
posite, Vf= 60%. Finite element results [11] are indi- 
cated by o for the mosaic model and by �9 for the fibre 
undulation model. - -  mosaic model; fibre 
undulation model. 

iour of  a plain weave composite after initial thread 
failure, known as a knee phenomenon [4, 8],  with 
some additional assumptions. The essential experi- 
mental fact for the knee phenomenon is that the 
breaking strain in the transverse layer, e}, is much 
smaller than that of  the longitudinal layer in 
cross-ply laminates [4].  Only the failure of  the 
transverse threads, which occurs in the warp 
direction in the present model is considered. Thus, 
a failure criterion based upon maximum strain is 
adopted and we again confine our attention to 
the one-dimensional behaviour of  fabric compo- 
sites under an applied N1 in the following analysis. 
Then Equation 3a is reduced to 

e ~ = a*nN1 + b~lM1 

K1 = b~lN, + d~zMl, (15) 

where Ma is the locally induced moment  resultant 
due to the application of  N1. 

By assuming first that no bending deflection by 
the coupling effect is allowed along the x-axis, 

K1 = b* l lN1 -}- d~ lM1  = O. (16) 

This assumption can be realized in an exact sense 
only if the fabric composite plate is symmetrical 
with respect to its mid-plane. However, in practical 
multilayer fabric composites, arranged symmetri- 
cally to their mid-plane, this assumption is ex- 
pected to be approximately true. From Equations 
15 and 16, we have 

6 0  * *  = a11N1, (17) 

* *  * _ _  A * 2 1 A *  where a l l  = a l l  U l l / t . ~ l l  - 

The quantity a~;' may be referred to as a modified 
in-plane compliance and is a function of  x.  Since 
N1 is uniform along the x-direction, a ~ ( x )  repre- 
sents a strain distribution before the first internal 
failure. Fig. 6 depicts two examples of  the mid- 
plane strain distribution relative to that at the 
point x = 0 in Fig. 4 and for au = a. It is easily 
seen that the fibre undulation causes local soften- 
ing and that the maximum strain appears at the 
centre of  undulation (x = a/2). Also, the strain 
along the thickness direction at each section is 
uniform and equal to e ~ owing to the classical 
plate theory and the bending free condition. 
Although the strain distribution calculated from 
finite element analysis [11] deviates slightly from 
the assumed uniform distribution, the present 
idealization provides a simple method for ana- 
lysing the knee phenomenon. 

We consider that the highest strain in the region 
exceeds the specified strain e~ first, and it immed- 
iately leads to the failure of the adjacent area. 
The damaged area in the warp thread then pro- 
pagates as the load increases. It is assumed 
that classical laminate theory is still valid in this 

T A B L E I Material properties of unidirectional lamina 

Material Graphite/Epoxy [6, 11, 19 ] Glass/Polyester [ 8 ] Glass/Polyirnide [ 17, 18 ] 

Ff in threads 65% 60% 60% 50% 
E L 132 GP a 113 GP a 47.5 GP a 41.2 GP a 
E T 9.31 8.82 15.9 15.7 
GLT 4.61 4.46 6.23 5.59 
VLT 0.28 0.3 0.27 0.3 
@ * * 0.38% 0.5% 

Thickness 
(mm) 0.4 0.4 0.4 0.244 

*Strength calculations are not conducted. 
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Figure 6 Relative strain distr ibution along the  x-axis in 
the  fibre undula t ion  model  under  the  bending-free con- 
dition, a u = a. - -  graphi te /epoxy;  - -  - -  glass/polyester. 

failure process, and that the effective elastic 
moduli of such a failed area in the warp threads 
are much lower than those of a sound area and 
can be expressed as 

I aW/lO0 aW/lO0 0 

Q;W =/QW/lOO QW 0 

[ o  o QW/loo 

(18) 

Here, Q~W denotes the reduced stiffness of the 
warp threads after failure, and it is assumed that, 
with the exception of QW, the Q~is are reduced 
by a factor of 1/100 to reflect the weakening 
effect of transverse cracking. The assumption of 
the applicability of the classical laminate theory 
implies that we neglect the complex stress and 
strain fields around the failed region. Such a 
successive failure process will continue until the 
lowest strain in the region reaches e~. At that 
time, all the warp regions are completely failed. 
Beyond this point, the stress-strain curve becomes 
a straight line again until the final failure of the 
fill threads. 

Next, consider the case where the restraint on 
bending is removed. From the classical laminate 
theory 

e(z) = e ~ +zKx.  (19) 

The strain state under an in-plane stress resultant, 
Nx, is given by 

e(z) = (a;1 + zb;1)N1. (20) 
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Thus, the strain field under the prescribed N1 is 
* b~l and z. Since the strain determined from a n ,  

in a section is distributed linearly according to 
Equation 19, it is necessary to determine the 
height, h3, where the strain reaches the critical 
value, e~. If the strain at the outer edge of the 
warp threads, e2(h~) according to Equation 19, 
is larger than e~, we have, for ao < x < a/2, 

e2 (h2 )  - -  e b 
h~(x)  = h ~ - - ( h ~ - - h ~ )  

e~(h:)  -- e~(hO" 

(2]) 

employing this h3, the plate stiffness in By 
Equations 5 to 7 needs to be modified after 
the initial failure. For instance, for ao ~_ x < a/2, 

A~i(x) = aiff [ h l (x ) -h 2 (x )  + h - h t / 2 ]  

+ QFi(O)ht/2 + a.W. ,, [h3(x)- h,(x)] 

+ a~W [h2(x) - h3(x)]. (22) 

Similar modifications to Equation 22 are made 
for Bij and Dij in Equations 6 and 7. 

Fig. 7 presents two numerical examples 
for a glass/polyester plain weave composite of 
a u = a and overall Vf = 36.8% with and without 
bending. The finite element analysis by other 
investigators [8] and their experimental result 
of acoustic emission [8, 15] are also given. Basic 
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Figure 7 Stress-strain curves for plain weave composi tes  
of  glass/polyester, V I = 36.8% and experimental  data of  
acoustic emission. ~ present  results for the  bending- 
free condition; - - . - -  present  result for the  bending 
unconst ra ined condit ion;  - - -  finite element simulation 
by  Kimpara  etal. [ 8 ] ; - -  total  count  in acoustic emission 
measurement  [8, 15 ] ; and an arrow indicates the  specified 
value o f  �9 b. 



material properties are shown in Table I. The 
prediction for the bending-free condition com- 
pares very favourably with the finite element 
simulation. It is quite reasonable that the case 
with bending provides much lower stiffness 
because it is not subjected to lateral constraints. 

In actual plain weave composites, local bending 
deformation caused by the coupling effect in each 
interlaced region is constrained by adjacent regions 
which have opposite signs of Bij. Therefore, as 
far as plain weave composites are concerned, the 
threadwise analysis under the bending-free con- 
dition should give a reasonable prediction of the 
behaviour under in-plane loading. 

4. Bridging model  for satin weaves 
The success of the threadwise analysis has led to 
the concept of a bridging model for general satin 
composites. Such a model is desirable in view of 
the fact that the interlaced regions in a satin 
weave are separated from one another. The hexa- 
gonal shape of the repeating unit in a satin weave, 
as shown in Fig. 8a, is modified to a square shape 
(Fig. 8b) for simplicity of calculation. A schematic 
view of the bridging model is shown in Fig. 8c for 
a repeating unit which consists of the interlaced 
region and its surrounding areas. This model is 

2a 3e 

(o) (b) 

D 
A ,I .~ E 

Figure 8 Concept of the bridging model. (a) Shape of the 
repeating unit of 8 harness satin; (b) modified shape for 
the repeating unit; (c) idealization for the bridging model. 

valid for only satin weaves where ng _>- 4. The four 
regions labelled by A, B, D and E consist of 
straight Fill threads, and hence can be regarded as 
pieces of cross-ply laminates of thickness h t. 
Region C has an interlaced structure with an un- 
dulated fill thread. Although the undulation and 
continuity in the warp threads are ignored in this 
model, the effect is expected to be small because 
applied load is in the fill direction. 

The in-plane stiffness in region C where ng = 2, 
has been calculated in Section 2 and has been 
found to be much lower than that of a cross-ply 
laminate. Therefore, regions B and D carry higher 
loads than region C and act as bridges for load 
transfer between regions A and E. It is also 
assumed here that regions B, C and D have the 
same averaged mid-plane strain and curvature. 
Then, the averaged stiffness constants for the 
regions B, C and D are 

1 
= - 1 ) A i j  + i71 

1 
/)ii = ~ [(x/ng-- 1)DIj+/5/y] .  (23) 

.~ff and/)iY for the undulated portion C in Fig. 8 
-*U -*U are obtained from aij and d~i of Equations 12 

and 14, and b-~ U = 0. A,j, Bij andDij in Equation 
23 for the cross-ply laminates of regions B and D 
in Fig. 8 are obtained from Equations 3a to d. 

It is also postulated that the total in-plane force 
carried by regions B, C and D is equal to that 
by region A or E. Then, the following averaged 
compliance constants are derived 

1 
al j-*s = x/rig [2~} + (X/ng -- 2)a~] 

1 bi j-*s = ~/ng [2g ;  + (~/ng -- 2)b~]  

-*s = 1 
dii x/ng [2aT~ + (~/ng - 2)d~]  (24) 

where ~7o, b-~ and ~ are determined by inverting 
Equation 23 and the quantities with superscript 
S denote properties of the entire satin plate. 
Finally, ~ s ,  / ~  and LS~ can be obtained by 
inverting Equation 24. 

The reason why the fibre undulation model 
is effective for plain weave composites whereas 
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the bridging model is valid for satin weave com- 
posites is explained below. There are no straight 
thread regions surrounding an interlaced region 
in the plain weave as can be seen from Fig. 1. 
Moreover, the threadwise distribution of in-plane 
stiffness under the bending-free condition is 
identical in each thread of a plain weave fabric 
in the loading direction. It can be expected, there- 
fore, that no bridging effect occurs in the plain 
weave composite, and that each thread carries 
the same in-plane force. Hence, the threadwise 
analysis based on the fibre undulation model 
provides a reasonable prediction of the behaviour 
of the plain weave composite. 

Numerical results for the relationship between 
the in-plane elastic stiffness X s  and ling is 
indicated in Fig. 9. The properties of constitutive 
UD laminae are listed in Table I for graphite/ 
epoxy composite [7] with a thread volume 
fraction of 65%. A prediction by the present 
theory shows an excellent agreement with experi- 
mental results by Zweben and Norman [2]. It 
should be noted that there is a slight drop of the 
overall Vf due to the pure resin regions around 
the undulation. For instance, for a thread V, 
of 65%, the average overall V, in a repeating unit 
(Fig. 8) for ng = 8, h t = h and au = a  is around 
62%. 

The bridging model and the concept of the 
successive failure can be combined for analysing 
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Figure 9 ,~S against 1/ng for a graphi te /epoxy system, 
V,  = 65%. - -  upper  and lower bounds;  - -  - -  bridging 
mode l  solution; �9 and o, experimental  results for a cross- 
ply laminate and 8 harness satin, respectively [2].  
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the knee behaviour in satin composites. Parallel 
to the approaches of Section 3, two cases of 
bending are considered. For the bending free case, 

A~I = 1/x/ng.~;~ + (1 -- 1/x/ng)A~, (25) 

where A~I = 1/a~; and a n  follows the definition 
in Equation 17. Due to the uniformity of N1 
along the x-direction, we obtain 

-**s 21x/ng a ~  + (1 - 21x/ng) a ~  a l l  ----- 

A I #  " " - * a s  = l /an , (26) 

where an-** = 1/A~I . Similar expressions for the 
unconstrained bending case can also be obtained 
but are omitted here. The rest of the procedure 
for examining the knee phenomenon is quite 
similar to that of Section 3. The initial failure 
of the warp threads occurs at the point of highest 
strain, for example, the centre of the undulation 
in the bending free case. Also, since there are 
regions of uniform strains such as the bridging 
zones in this model, the entire area of those 
regions may fail simultaneously, according to 
the present assumptions. 

Fig. 10 compares numerical and experimental 
results for stress-strain curves of 8 harness satin 
fabric plates of glass/polyimide composites. Basic 
material properties are also indicated in Table I, 
where certain values are estimated from matrix 

o2 " ~  

"-8 
(2- 
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O,I u) 

/-  / 
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Figure 10 Theoretical  and exper imental  s tress-strain 
curves for a glass/polyimide composite,  V f =  50% in 
threads. - -  bridging model  solution wi thout  bending 
for 8 harness satin (overall V f = 4 7 . 7 % ) ;  - - -  fibre 
undula t ion  mode l  solution wi thout  bending for plain 
weave (overall V f = 4 0 . 9 % ) ;  - - - -  an exper imental  
curve from [17] ; e  knee points. 



data [6, 18]. The experimental curve is reproduced 
from [17]. Since test pieces were curved nearly 
symmetrically with respect to their mid-planes, the 
bending free analysis is selected for comparison. 
It can be seen that the agreement is quite good, 
particularly for strain values up to the point of the 
knee. A theoretical curve for the plain weave com- 
posite of the same material is also shown in Fig. 
10. We define a knee point by a deviation of 
0.01% in strain from the linear strain. Then, we 
observe that knee stress in the 8 harness satin is 
higher than that of the plain weave although knee 
strains are nearly identical. It can be concluded 
that the elastic stiffness and knee stress in satin 
composites are higher than those in plain wave 
composites due to the presence of the bridging 
regions. 

5. Conclusions 
(1) A threadwise analysis of fabric composites in 
which fibre continuity and undulations are con- 
sidered has been conducted. The fibre undulation 
model based upon a threadwise strip provides 
better predictability than the mosaic model. 

(2) The results of the threadwise analysis for 
in-plane elastic stiffness of fabric composites 
exhibit considerable softening as compared to 
cross-ply laminates. This approach is particularly 
suited for predicting elastic properties of plain 
weave composites and the theory compares very 
favourably with finite element analysis. 

(3) The threadwise analysis has been applied 
to examine the knee phenomenon of plain weave 
composites. The predicted knee behaviour of a 
glass/polyester composite under the bending free 
assumption shows an excellent agreement with 
the stress-strain curve obtained by other workers 
using the finite element analysis. 

(4) A bridging model also has been developed 
to examine the stiffness and strength of general 
satin composites. The interlaced regions in a satin 
fabric are separated from one another by the non- 
interlaced regions. Since the regions with straight 
threads surrounding an interlaced region have 
higher in-plane stiffness than the latter, they carry 
higher loads and play the role of load transferring 
bridges. 

(5) The initial elastic stiffness of satin com- 
posites can be predicted by the bridging model. 
The present analysis of an 8 harness satin compo- 
site of graphite/epoxy demonstrates good agree- 
ment with experimental data obtained by other 

workers, for the fabric and for a cross-ply laminate 
as the limiting case. 

(6) The concept of successive failure of the 
warp threads and the bridging idealization have 
been combined to study the knee behaviour in 
satin composites. The theoretical results for an 
8 harness satin reinforced glass/polyimide com- 
posite compares extremely well with the experi- 
mental curve. It has been concluded that the 
bridging regions surrounding the interlaced regions 
are responsible for the higher stiffness and knee 
stress in satin composites than those in plain weave 
composites. 
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